Lineare Algebra I – Prüfung Winter 2022 – Prof. Pink

- 1. (40 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete Teilaufgabe erhalten Sie 2 Punkte, sonst 0 Punkte. Bei dieser Aufgabe sollen Sie die Antworten nicht begründen.
 - (I) Im Körper \mathbb{F}_{13} gilt die Gleichung $x^2 = \overline{3}$ für
 - (a) $x = \overline{3}$.
 - (b) $x = \overline{6}$.
 - (c) $x = \overline{9}$.
 - (d) $x = \overline{12}$.
 - (II) Welcher Ausdruck ist für beliebige Aussagen A und B äquivalent zu dem Ausdruck $(A \Rightarrow B) \lor (B \Rightarrow A)$?
 - (a) $A \Leftrightarrow B$
 - (b) $A \vee \neg A$
 - (c) $A \vee B$
 - (d) $(\neg A \lor B) \land (\neg B \lor A)$
 - (III) Welche der folgenden Aussagen ist sinnvoll und eindeutig für einen beliebigen Körper K? (Es kommt nicht darauf an, ob die Aussage richtig ist.)
 - (a) $\forall x \in K \ \exists y \in K \colon x = y^2$.
 - **(b)** $\exists x \in K : x^2 > x$
 - (c) $\forall x \in K \setminus \{0\} : e^x \neq 1$.
 - (d) $\exists x \in K : x x = y y \ \forall y \in K$.
 - (IV) Welcher der folgenden vier Ausdrücke ist **nicht** identisch zu dem Ausdruck $(A B)^2$ für beliebige quadratische Matrizen A und B derselben Grösse?
 - (a) $(B A)^2$
 - **(b)** A(A B) + B(B A)
 - (c) $A^2 AB BA + B^2$.
 - (d) $A^2 2AB + B^2$
 - (V) Unter welcher Operation für eine Matrix A ist die Lösungsmenge der Vektorgleichung Av = 0 im allgemeinen **nicht** invariant?
 - (a) Die Vertauschung zweier Zeilen von A.
 - (b) Die Multiplikation einer Spalte mit einem Skalar $\lambda \neq 0$.
 - (c) Die Multiplikation von links mit einer oberen Dreiecksmatrix mit allen Diagonaleinträgen 1.

- (d) Das Ersetzen von A durch die Blockmatrix $\binom{A}{A}$.
- (VI) Welche der folgenden Teilmengen ist kein Unterraum des R-Vektorraums der Zeilenvektoren \mathbb{R}^3 ?
 - (a) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = 2x_2 = 3x_3\}.$
 - **(b)** $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 x_2 = 0\}.$
 - (c) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 0\}.$
 - (d) $\{(0,0,x^2-y^2) \mid x,y \in \mathbb{R}\}.$
- (VII) Für Spaltenvektoren $v, w \in \mathbb{R}^n$ sei $v \sim w$ durch eine der folgenden Bedingungen definiert. In welchem der Fälle liefert dies keine Äquivalenzrelation?
 - (a) ... eine invertierbare Matrix A existiert mit $A \cdot w = v$.
 - (b) ... eine lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ existiert mit f(v) = f(w).
 - (c) ... ein $u \in \mathbb{R}^n \setminus \{0\}$ existiert mit w + u = v.
 - (d) ... ein $x \in \mathbb{R} \setminus \{0\}$ existiert mit $x \cdot w = v$.
- (VIII) Für jeden Unterraum $V \subset \mathbb{R}^3$
 - (a) existiert ein Unterraum $W \subset \mathbb{R}^3$ mit $\dim(V + W) = \dim(W)$.
 - (b) existiert ein Unterraum $W \subset \mathbb{R}^3$ mit $V \cap W = \emptyset$.
 - (c) und jeden Unterraum $W \subset \mathbb{R}^3$ gilt $|V \cap W| = \infty$.
 - (d) mit $\dim(V) = 2$ existiert ein Unterraum $W \subset \mathbb{R}^3$ der Dimension 2 mit $|V \cap W| = 1.$
- (IX) Welche Matrix ist die Inverse der folgenden reellen Matrix?

$$\begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$$

- (a) $\begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{2} \end{pmatrix}$ (b) $\begin{pmatrix} 0 & \frac{1}{6} \\ -\frac{1}{6} & \frac{1}{2} \end{pmatrix}$
- $(\mathbf{c}) \begin{pmatrix} \frac{1}{3} & 0\\ -\frac{1}{6} & \frac{1}{2} \end{pmatrix}$
- (d) $\begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$
- (X) Welche der folgenden Abbildungen ist ein Homomorphismus von C-Vektorräumen?
 - (a) $f: \mathbb{C} \to \mathbb{C}, z \mapsto \bar{z}$.

- **(b)** $f: \mathbb{C}^2 \to \mathbb{C}^3, (z_1, z_2) \mapsto (z_1, z_2, 1).$
- (c) $f: \mathbb{C}^2 \to \mathbb{C}^2$, $(z_1, z_2) \mapsto z_1 z_2$.
- (d) $f: \mathbb{C}^2 \to \mathbb{C}^2$, $(z_1, z_2) \mapsto (z_1 + iz_2, z_1 iz_2)$.
- (XI) Betrachte die reellen Matrizen

$$A = \begin{pmatrix} 10^{-7} & -1 & \pi \\ \frac{2}{371} & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} \cos(3) & 0 & 1 \\ -15 & 1 & \pi^2 \\ 1 & 0 & 0 \end{pmatrix}$$

- (a) Es gilt $\det(A^{21}B^{17}) = \pi^{55}$.
- **(b)** Es gilt $\det(A^{21}B^{17}) = \pi^3$.
- (c) Es gilt $\det(A^{21}B^{17}) = -1$.
- (d) Es gilt $\det(A^{21}B^{17}) = 1$.
- (XII) Welche der folgenden Aussagen impliziert, dass die Aussage A_n für alle ganzen Zahlen $n \ge 1$ gilt?
 - (a) Es gilt A_1 und für alle $k, \ell \geqslant 1$ gilt $(A_k \wedge A_\ell) \Longrightarrow A_{\ell \cdot k}$.
 - (b) Es gilt A_1 und für alle $k, \ell \geqslant 1$ gilt $(A_k \land A_\ell) \Longrightarrow A_{k^\ell}$.
 - (c) Es gilt A_1 und für alle $k, \ell \geqslant 1$ gilt $(A_k \land A_\ell) \Longrightarrow A_{2k+3\ell}$.
 - (d) Es gilt A_1 und für alle $k, \ell \geqslant 1$ gilt $(A_k \land A_\ell) \Longrightarrow A_{k+\ell}$.
- (XIII) Für die reelle Matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & 3 \\ 2 & 2 & 6 \end{pmatrix}$$

- (a) hat das lineare Gleichungssystem Av = 0 keine Lösung.
- (b) existiert ein Vektor $b \in \mathbb{R}^4$, so dass das lineare Gleichungssystem Av = b genau eine Lösung hat.
- (c) sind die ersten drei Zeilen linear unabhängig.
- (d) erzeugen je zwei Spalten denselben Unterraum wie alle Spalten.
- (XIV) Welche Aussage ist richtig für das rationale Polynom

$$P(X) := \sum_{k=0}^{2021} X^k = X^{2021} + X^{2020} + \ldots + X + 1$$
?

- (a) Das Polynom hat genau eine rationale Nullstelle.
- (b) Das Polynom hat die Nullstellen -3 und -7.
- (c) Das Polynom ist irreduzibel.

- (d) Das Polynom zerfällt über $\mathbb Q$ in Linearfaktoren.
- (XV) Für die folgenden Vektoren in \mathbb{R}^4 gilt:

$$a = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 3 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \qquad c = \begin{pmatrix} 0 \\ -2 \\ 2 \\ 2 \end{pmatrix}$$

- (a) Das Erzeugnis hat Dimension 2.
- (b) Das Erzeugnis hat Dimension 3.
- (c) Es existiert ein Vektor $d \in \mathbb{R}^4$, so dass $\{a, b, c, d\}$ eine Basis von \mathbb{R}^4 ist.
- (d) Die Gleichung $\alpha a + \beta b + \gamma c = 0$ besitzt keine nicht-triviale Lösung $(\alpha, \beta, \gamma) \in \mathbb{R}^3$.
- (XVI) Welche der folgenden Abbildungen $\mathbb{C} \to \mathbb{C}$ beschreibt die Spiegelung an der Geraden $\mathbb{R} \cdot (1+i)$?
 - (a) $z \mapsto i \cdot z \cdot i$
 - (b) $z \mapsto \bar{z} \cdot i$
 - (c) $z \mapsto \bar{z} \cdot i^{-1}$
 - (d) $z \mapsto i \cdot z \cdot i^{-1}$
- (XVII) Seien A eine reelle $m \times n$ -Matrix und b ein reeller Spaltenvektor, so dass das lineare Gleichungssystem AX = b genau eine Lösung hat. Dann gilt:
 - (a) A ist invertierbar.
 - (b) n < m.
 - (c) $\operatorname{Rang}(A) = n$.
 - (d) Rang(A) = m.
- (XVIII) Die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (y z, z x, x y)$
 - (a) ist injektiv.
 - (b) ist surjektiv.
 - (c) hat Bild der Dimension 2.
 - (d) hat Kern der Dimension 2.
- (XIX) Welche der folgenden Aussagen ist korrekt für alle $n \ge 0$?
 - (a) Jede $n \times n$ -Matrix, die nur den Eigenwert 1 hat, ist ähnlich zur Einheitsmatrix.
 - (b) Je zwei $n \times n$ -Matrizen mit derselben Determinante sind ähnlich.
 - (c) Die reellen Matrizen $(i \cdot \delta_{ij})_{1 \leq i,j \leq n}$ und $((n-i) \cdot \delta_{ij})_{1 \leq i,j \leq n}$ sind ähnlich.

- (d) Sind zwei $n \times n$ -Matrizen A und B ähnlich, dann sind auch die Matrizen $A^2 + A$ und $B^2 + B$ ähnlich.
- (XX) Für jede reelle 3×6 -Matrix A vom Rang 3 gilt:
 - (a) Es existiert eine von Null verschiedene reelle 3×3 -Matrix B mit BA = 0.
 - (b) Es existiert ein Spaltenvektor $b \in \mathbb{R}^3$, so dass das lineare Gleichungssystem Av = b keine Lösung hat.
 - (c) Für die lineare Abbildung $L_A : \mathbb{R}^6 \to \mathbb{R}^3$, $v \mapsto Av$ gilt dim(Bild(L_A)) = dim(Kern(L_A)).
 - (d) Je drei Spalten von A sind linear unabhängig.

2. Betrachte die durch Linksmultiplikation mit der Matrix

$$A = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & h & 0 \end{pmatrix}$$

gegebene lineare Abbildung $L_A \colon \mathbb{R}^4 \to \mathbb{R}^3$.

- (a) (3 Punkte) Für welche Werte von $h \in \mathbb{R}$ ist L_A surjektiv?
- (b) (3 Punkte) Für welche Werte von $h \in \mathbb{R}$ ist L_A injektiv?
- (c) (4 Punkte) Bestimme im Fall h = 2 eine Basis von Kern (L_A) .
- (d) (3 Punkte) Ergänze diese zu einer Basis von \mathbb{R}^4 .
- (e) (3 Punkte) Gib ein Beispiel eines lineares Gleichungssystems mit 2 Gleichungen, 5 Unbekannten, und keiner Lösung.

- **3.** Sei K ein Körper und $P_n \subset K[X]$ der K-Unterraum aller Polynome vom Grad $\leq n$.
 - (a) (2 Punkte) Gib die Definition einer geordneten Basis eines K-Vektorraums V an.
 - (b) (2 Punkte) Gib eine geordnete Basis von P_n an. (Ohne Beweis)
 - (c) $(4 \ Punkte)$ Zeige, dass die folgende Abbildung linear ist:

$$T \colon P_n \to P_n, \ f(X) \mapsto f(X+1) - \frac{df}{dX}.$$

- (d) (6 Punkte) Bestimme die Darstellungsmatrix von T bezüglich der geordneten Basis in (b).
- (e) (2 Punkte) Ist T ein Isomorphismus, und warum?

- **4.** Sei $A=(a_{ij})_{1\leqslant i,j\leqslant n}$ eine $n\times n$ -Matrix über einem Körper K mit $n\geqslant 1$.
 - (a) (2 Punkte) Gib die Leibnizsche Formel für det(A) als Polynom in den Koeffizienten an.
 - (b) (3 Punkte) Gib drei allgemeine Grundeigenschaften der Determinante an.
 - (c) (3 Punkte) Zeige, dass A nicht invertierbar ist, wenn det(A) = 0 ist.
 - (d) (8 Punkte) Berechne im Fall $a_{ij}=2^{i+j}\in\mathbb{R}$ die Determinante der Matrix $B:=A+I_n.$

- 5. Betrachte einen K-Vektorraum V und eine lineare Abbildung $f: V \to V$.
 - (a) (2 Punkte) Gib die genaue Definition von Eigenwerten und Eigenvektoren von f an.
 - (b) (4 Punkte) Zeige, dass je zwei Eigenvektoren zu verschiedenen Eigenwerten linear unabhängig sind.
 - (c) (4 Punkte) Sei A eine $n \times n$ -Matrix über K, und $v \in K^n$ ein Eigenvektor von A zum Eigenwert λ . Zeige, dass v für jede natürliche Zahl $k \geqslant 0$ ein Eigenvektor der Matrix A^k zum Eigenwert λ^k ist.
 - (d) (3 Punkte) Sei A eine $n \times n$ -Matrix über K, die die Gleichung $A^{2021} = A^{2022}$ erfüllt. Zeige, dass 0 und 1 die einzigen möglichen Eigenwerte von A sind.
 - (e) (3 Punkte) Entscheide, mit vollständigem Beweis, ob die Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

über \mathbb{Q} die Gleichung in (d) erfüllt.